Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 53

Answer

$$\frac{{15}}{{16}} + \ln 2$$

Work Step by Step

$$\eqalign{ & \int_1^4 {\left( {\frac{x}{8} + \frac{1}{{2x}}} \right)} dx \cr & {\text{use the sum rule}} \cr & = \int_1^4 {\frac{x}{8}} dx + \int_1^4 {\frac{1}{{2x}}} dx \cr & = \frac{1}{8}\int_1^4 x dx + \frac{1}{2}\int_1^4 {\frac{1}{x}} dx \cr & {\text{integrate using the power rule and }}\cr &\int {\frac{1}{x}} dx = \ln \left| x \right| + C \cr & = \frac{1}{8}\left( {\frac{{{x^2}}}{2}} \right)_1^4 + \frac{1}{2}\left( {\ln \left| x \right|} \right)_1^4 \cr & = \left( {\frac{{{x^2}}}{{16}} + \frac{1}{2}\ln \left| x \right|} \right)_1^4 \cr & {\text{use the fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \left( {\frac{{{{\left( 4 \right)}^2}}}{{16}} + \frac{1}{2}\ln \left| 4 \right|} \right) - \left( {\frac{{{{\left( 1 \right)}^2}}}{{16}} + \frac{1}{2}\ln \left| 1 \right|} \right) \cr & = \left( {1 + \frac{1}{2}\ln 4} \right) - \left( {\frac{1}{{16}} + 0} \right) \cr & = 1 + \ln 2 - \frac{1}{{16}} \cr & = \frac{{15}}{{16}} + \ln 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.