Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 34

Answer

$$ - \csc \left( {{e^y} + 1} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {{e^y}csc\left( {{e^y} + 1} \right)} \cot \left( {{e^y} + 1} \right)dy \cr & {\text{integrate by substitution method}} \cr & {\text{set }}u = {e^y} + 1{\text{ then }}\frac{{du}}{{dy}} = {e^y},\,\,\,\,dy = \frac{{du}}{{{e^y}}} \cr & {\text{write the integrand in terms of }}u \cr & \int {{e^y}csc\left( {{e^y} + 1} \right)} \cot \left( {{e^y} + 1} \right)dy = \int {{e^y}\csc u} \cot u\left( {\frac{{du}}{{{e^y}}}} \right) \cr & {\text{cancel common terms}} \cr & = \int {\csc u\cot u} du \cr & {\text{integrate by the formula }}\cr &\int {\csc x\cot x} dx = - \csc x + C \cr & = - \csc u + C \cr & {\text{replace }}{e^y} + 1{\text{ for }}u \cr & = - \csc \left( {{e^y} + 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.