Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 59

Answer

$$\frac{9}{{14}}$$

Work Step by Step

$$\eqalign{ & \int_1^e {\frac{1}{x}{{\left( {1 + 7\ln x} \right)}^{ - 1/3}}} dx \cr & {\text{use substitution}}{\text{: }} \cr & {\text{ }}u = 1 + 7\ln x,{\text{ so that }}\frac{{du}}{{dx}} = \frac{7}{x},\,\,\,dx = \frac{{xdu}}{7} \cr & {\text{the new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}x = e,{\text{ }}u = 1 + 7\ln e = 8 \cr & \,\,\,\,\,\,{\text{If }}x = 1,{\text{ }}u = 1 + 7\ln 1 = 1 \cr & {\text{then}} \cr & \int_1^e {\frac{1}{x}{{\left( {1 + 7\ln x} \right)}^{ - 1/3}}} dx = \int_1^8 {\frac{1}{x}{u^{ - 1/3}}} \left( {\frac{{xdu}}{7}} \right) \cr & = \frac{1}{7}\int_1^8 {{u^{ - 1/3}}} du \cr & {\text{integrating, we get:}} \cr & = \frac{1}{7}\left( {\frac{{{u^{2/3}}}}{{2/3}}} \right)_1^8 \cr & = \frac{3}{{14}}\left( {{u^{2/3}}} \right)_1^8 \cr & {\text{use the fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \frac{3}{{14}}\left( {{8^{2/3}} - {1^{2/3}}} \right) \cr & {\text{simplifying, we get:}} \cr & = \frac{3}{{14}}\left( {4 - 1} \right) \cr & = \frac{9}{{14}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.