Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 43

Answer

$$ - \ln \left| {\cos \left( {\ln v} \right)} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{\tan \left( {\ln v} \right)}}{v}} dv \cr & {\text{Integrate by the substitution method}} \cr & {\text{set }}u = \ln v{\text{ then }}\frac{{du}}{{dv}} = \frac{1}{v},\,\,\,\,dv = vdu \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{\tan \left( {\ln v} \right)}}{v}} dv = \int {\frac{{\tan u}}{v}} \left( {vdu} \right) \cr & {\text{cancel common terms}} \cr & = \int {\tan u} du \cr & {\text{integrating}}{\text{, we use }}\cr & \int {\tan x} dx = - \ln \left| {\cos x} \right| + C \cr & = - \ln \left| {\cos u} \right| + C \cr & {\text{replace }}\ln v{\text{ for }}u \cr & = - \ln \left| {\cos \left( {\ln v} \right)} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.