Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 46

Answer

$$\frac{{{{\ln }^2}\left( {x - 5} \right)}}{2} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{\ln \left( {x - 5} \right)}}{{x - 5}}} dx \cr & {\text{integrate by the substitution method}} \cr & {\text{set }}u = \ln \left( {x - 5} \right){\text{ then }}\frac{{du}}{{dx}} = \frac{1}{{\left( {x - 5} \right)}},\,\,\,\,dx = \left( {x - 5} \right)du \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{\ln \left( {x - 5} \right)}}{{x - 5}}} dx = \int {\frac{u}{{x - 5}}} \left( {x - 5} \right)du \cr & {\text{cancel common terms}} \cr & = \int u du \cr & {\text{integrating}}{\text{,}} \cr & = \frac{{{u^2}}}{2} + C \cr & {\text{replace }}\ln \left( {x - 5} \right){\text{ for }}u \cr & = \frac{{{{\ln }^2}\left( {x - 5} \right)}}{2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.