Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 49

Answer

$$\frac{1}{{2\ln 3}}\left( {{3^{{x^2}}}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {x{3^{{x^2}}}} dx \cr & {\text{use substitution}}{\text{: }} \cr & {\text{ }}u = {x^2},{\text{ then }}\frac{{du}}{{dx}} = 2x,\,\,\,\,\frac{{du}}{{2x}} = dx \cr & {\text{then}} \cr & \int {x{3^{{x^2}}}} dx = \int {x{3^u}} \left( {\frac{{du}}{{2x}}} \right) \cr & = \int {{3^u}} \left( {\frac{{du}}{2}} \right) \cr & = \frac{1}{2}\int {{3^u}} du \cr & {\text{integrate using }}\int {{a^u}} du = \frac{{{a^u}}}{{\ln a}} + C \cr & = \frac{1}{2}\left( {\frac{{{3^u}}}{{\ln 3}}} \right) + C \cr & {\text{replace }}{x^2}{\text{ for }}u \cr & = \frac{1}{{2\ln 3}}\left( {{3^{{x^2}}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.