Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 36

Answer

$$ - {e^{\cot x}} + C $$

Work Step by Step

$$\eqalign{ & \int {{{\csc }^2}x{e^{\cot x}}} dx \cr & {\text{integrate by the substitution method}} \cr & {\text{set }}u = \cot x\cr &{\text{ then }}\frac{{du}}{{dx}} = - {\csc ^2}x,\,\,\,\,dx = \frac{{du}}{{ - {{\csc }^2}x}} \cr & {\text{write the integrand in terms of }}u \cr & \int {{{\csc }^2}x{e^{\cot x}}} dx = \int {{{\csc }^2}x{e^u}} \left( {\frac{{du}}{{ - {{\csc }^2}x}}} \right) \cr & {\text{cancel common terms}} \cr & = - \int {{e^u}} du \cr & {\text{integrating }} \cr & = - {e^u} + C \cr & {\text{replace }}\tan x{\text{ for }}u \cr & = - {e^{\cot x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.