Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 31

Answer

$$ - \cos {e^x} + C $$

Work Step by Step

$$\eqalign{ & \int {{e^x}\sin \left( {{e^x}} \right)} dx \cr & {\text{integrate by the substitution method}} \cr & {\text{set }}u = {e^x}{\text{ then }}\frac{{du}}{{dx}} = {e^x},\,\,\,\,dx = \frac{{du}}{{{e^x}}} \cr & {\text{write the integrand in terms of }}u \cr & \int {{e^x}\sin \left( {{e^x}} \right)} dx = \int {{e^x}\sin \left( u \right)} \left( {\frac{{du}}{{{e^x}}}} \right) \cr & {\text{cancel common terms}} \cr & = \int {{e^u}\left( {\frac{{du}}{\pi }} \right)} \cr & = \int {\sin u} du \cr & {\text{integrate}} \cr & = - \cos u + C \cr & {\text{replace }}{e^x}{\text{ for }}u \cr & = - \cos {e^x} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.