Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 37

Answer

$$ - \frac{1}{3}\ln 7$$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^1 {\frac{{dx}}{{3x - 4}}} \cr & {\text{Use substitution:}}\cr &{\text{Let }}u = 3x - 4,{\text{ so that }}du = 3dx \cr & {\text{The new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}x = 1,{\text{ then }}u = 3\left( 1 \right) - 4 = - 1 \cr & \,\,\,\,\,\,{\text{If }}x = - 1,{\text{ then }}u = 3\left( { - 1} \right) - 4 = - 7 \cr & {\text{Then}} \cr & \int_{ - 1}^1 {\frac{{dx}}{{3x - 4}}} = \int_{ - 7}^{ - 1} {\frac{{\left( {1/3} \right)du}}{u}} \cr & = \frac{1}{3}\int_{ - 7}^{ - 1} {\frac{1}{u}} du \cr & {\text{integrate}} \cr & = \frac{1}{3}\left( {\ln \left| {} \right|} \right)_{ - 7}^{ - 1} \cr & {\text{use the fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \frac{1}{3}\left( {\ln \left| { - 1} \right| - \ln \left| { - 7} \right|} \right) \cr & {\text{simplifying, we get:}} \cr & = \frac{1}{3}\left( {0 - \ln 7} \right) \cr & = - \frac{1}{3}\ln 7 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.