Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 2

Answer

$$\frac{{dy}}{{dx}} = 2{e^{\sqrt 2 x}}$$

Work Step by Step

$$\eqalign{ & y = \sqrt 2 {e^{\sqrt 2 x}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\sqrt 2 {e^{\sqrt 2 x}}} \right] \cr & \frac{{dy}}{{dx}} = \sqrt 2 \frac{d}{{dx}}\left[ {{e^{\sqrt 2 x}}} \right] \cr & {\text{we can use the formula }}\frac{d}{{dx}}{e^u} = {e^u}\frac{{du}}{{dx}}\cr &{\text{where }}u{\text{ is any differentiable function of }}x \cr & {\text{note that }}u = \sqrt 2 x,{\text{ so}} \cr & \frac{{dy}}{{dx}} = \sqrt 2 {e^{\sqrt 2 x}}\frac{d}{{dx}}\left[ {\sqrt 2 x} \right] \cr & {\text{then}} \cr & \frac{{dy}}{{dx}} = \sqrt 2 {e^{\sqrt 2 x}}\left( {\sqrt 2 } \right) \cr & \frac{{dy}}{{dx}} = 2{e^{\sqrt 2 x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.