Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 29

Answer

$$\frac{{dy}}{{d\theta }} = {\left( {\sin \theta } \right)^{\sqrt \theta }}\left( {\sqrt \theta \cot \theta + \frac{{\ln \left( {\sin \theta } \right)}}{{2\sqrt \theta }}} \right)$$

Work Step by Step

$$\eqalign{ & y = {\left( {\sin \theta } \right)^{\sqrt \theta }} \cr & {\text{Take the natural logarithm on both sides}} \cr & \ln y = \ln {\left( {\sin \theta } \right)^{\sqrt \theta }} \cr & {\text{use power property for logarithms}} \cr & \ln y = \sqrt \theta \ln \left( {\sin \theta } \right) \cr & {\text{differentiate both sides with respect to }}\theta \cr & \frac{1}{y}\frac{{dy}}{{d\theta }} = \sqrt \theta \frac{d}{{d\theta }}\left( {\ln \left( {\sin \theta } \right)} \right) + \ln \left( {\sin \theta } \right)\frac{d}{{d\theta }}\left( {\sqrt \theta } \right) \cr & \frac{1}{y}\frac{{dy}}{{d\theta }} = \sqrt \theta \left( {\frac{{\cos \theta }}{{\sin \theta }}} \right) + \ln \left( {\sin \theta } \right)\left( {\frac{1}{{2\sqrt \theta }}} \right) \cr & \frac{1}{y}\frac{{dy}}{{d\theta }} = \sqrt \theta \cot \theta + \frac{{\ln \left( {\sin \theta } \right)}}{{2\sqrt \theta }} \cr & {\text{solve the equation for }}\frac{{dy}}{{d\theta }} \cr & \frac{{dy}}{{d\theta }} = y\left( {\sqrt \theta \cot \theta + \frac{{\ln \left( {\sin \theta } \right)}}{{2\sqrt \theta }}} \right) \cr & {\text{replace }}y = {\left( {\sin \theta } \right)^{\sqrt \theta }} \cr & \frac{{dy}}{{d\theta }} = {\left( {\sin \theta } \right)^{\sqrt \theta }}\left( {\sqrt \theta \cot \theta + \frac{{\ln \left( {\sin \theta } \right)}}{{2\sqrt \theta }}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.