Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 18

Answer

$$\frac{{dy}}{{dz}} = {\cos ^{ - 1}}z $$

Work Step by Step

$$\eqalign{ & y = z{\cos ^{ - 1}}z - \sqrt {1 - {z^2}} \cr & {\text{find the derivative of }}y{\text{ with respect to }}z \cr & \frac{{dy}}{{dz}} = \frac{{d\left( {z{{\cos }^{ - 1}}z - \sqrt {1 - {z^2}} } \right)}}{{dz}} \cr & \frac{{dy}}{{dz}} = \frac{{d\left( {z{{\cos }^{ - 1}}z} \right)}}{{dz}} - \frac{{d\left( {\sqrt {1 - {z^2}} } \right)}}{{dz}} \cr & {\text{use the product rule}} \cr & \frac{{dy}}{{dz}} = z\frac{{d\left( {{{\cos }^{ - 1}}z} \right)}}{{dz}} + {\cos ^{ - 1}}z\frac{{d\left( z \right)}}{{dz}} - \frac{{d\left( {\sqrt {1 - {z^2}} } \right)}}{{dz}} \cr & {\text{use the formula }}\cr &\frac{{d\left( {{{\cos }^{ - 1}}x} \right)}}{{dx}} = - \frac{1}{{\sqrt {1 - {x^2}} }}\frac{{du}}{{dx}}\cr &{\text{ and the chain rule}} \cr & \frac{{dy}}{{dz}} = z\left( { - \frac{1}{{\sqrt {1 - {z^2}} }}} \right) + {\cos ^{ - 1}}z\left( 1 \right) - \frac{1}{2}{\left( {1 - {z^2}} \right)^{ - 1/2}}\left( { - 2z} \right) \cr & {\text{simplifying, we get:}} \cr & \frac{{dy}}{{dz}} = - \frac{z}{{\sqrt {1 - {z^2}} }} + {\cos ^{ - 1}}z + \frac{z}{{\sqrt {1 - {z^2}} }} \cr & \frac{{dy}}{{dz}} = {\cos ^{ - 1}}z \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.