Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 5

Answer

$$\frac{{dy}}{{d\theta }} = 2\cot \theta $$

Work Step by Step

$$\eqalign{ & y = \ln \left( {{{\sin }^2}\theta } \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {\ln \left( {{{\sin }^2}\theta } \right)} \right] \cr & {\text{use the rule }}\frac{d}{{d\theta }}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{d\theta }}\cr &{\text{for this exercise, consider }}u = {\sin ^2}\theta :{\text{}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{{{\sin }^2}\theta }}\frac{d}{{d\theta }}\left[ {{{\sin }^2}\theta } \right] \cr & {\text{use the chain rule}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{{{\sin }^2}\theta }}\left( {2\sin \theta } \right)\frac{d}{{d\theta }}\left[ {\sin \theta } \right] \cr & {\text{solving the derivative, we get: }} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{{{\sin }^2}\theta }}\left( {2\sin \theta } \right)\left( {\cos \theta } \right) \cr & {\text{simplifying, we get:}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sin \theta }}\left( 2 \right)\left( {\cos \theta } \right) \cr & \frac{{dy}}{{d\theta }} = 2\cot \theta \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.