Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 3

Answer

$$\frac{{dy}}{{dx}} = x{e^{4x}}$$

Work Step by Step

$$\eqalign{ & y = \frac{1}{4}x{e^{4x}} - \frac{1}{{16}}{e^{4x}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\frac{1}{4}x{e^{4x}} - \frac{1}{{16}}{e^{4x}}} \right] \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\frac{1}{4}x{e^{4x}}} \right] - \frac{d}{{dx}}\left[ {\frac{1}{{16}}{e^{4x}}} \right] \cr & {\text{use the product rule}} \cr & \frac{{dy}}{{dx}} = \frac{1}{4}x\frac{d}{{dx}}\left[ {{e^{4x}}} \right] + \frac{1}{4}{e^{4x}}\frac{d}{{dx}}\left[ x \right] - \frac{1}{{16}}\frac{d}{{dx}}\left[ {{e^{4x}}} \right] \cr & {\text{we can use the formula }}\frac{d}{{dx}}{e^u} = {e^u}\frac{{du}}{{dx}}\cr &{\text{where }}u{\text{ is any differentiable function of }}x \cr & \frac{{dy}}{{dx}} = \frac{1}{4}x\left( {4{e^{4x}}} \right) + \frac{1}{4}{e^{4x}}\left( 1 \right) - \frac{1}{{16}}\left( {4{e^{4x}}} \right) \cr & {\text{then}} \cr & \frac{{dy}}{{dx}} = x{e^{4x}} + \frac{1}{4}{e^{4x}} - \frac{1}{4}{e^{4x}} \cr & \frac{{dy}}{{dx}} = x{e^{4x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.