Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 41

Answer

$$\ln \left( {\frac{9}{{25}}} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^4 {\frac{{2t}}{{{t^2} - 25}}} dt \cr & {\text{Use substitution:}}\cr &{\text{Let }}u = {t^2} - 25,{\text{ so that }}du = 2tdt \cr & {\text{The new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}t = 4,{\text{ then }}u = {\left( 4 \right)^2} - 25 = - 9 \cr & \,\,\,\,\,\,{\text{If }}t = 0,{\text{ then }}u = {\left( 4 \right)^2} - 25 = - 25 \cr & {\text{Then}} \cr & \int_0^4 {\frac{{2t}}{{{t^2} - 5}}} dt = \int_{ - 25}^{ - 9} {\frac{{du}}{u}} \cr & {\text{integrate}} \cr & = \left( {\ln \left| u \right|} \right)_{ - 25}^{ - 9} \cr & {\text{use fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \ln \left| { - 9} \right| - \ln \left| { - 25} \right| \cr & {\text{simplifying, we get:}} \cr & = \ln \left( {\frac{9}{{25}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.