Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 55

Answer

$$ e - 1$$

Work Step by Step

$$\eqalign{ & \int_{ - 2}^{ - 1} {{e^{ - \left( {x + 1} \right)}}} dx \cr & {\text{use substitution}}{\text{: }} \cr & {\text{ }}u = - \left( {x + 1} \right),{\text{ so that }}\frac{{du}}{{dx}} = - 1,\,\,\,dx = - du \cr & {\text{the new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}x = - 1,{\text{ }}u = - \left( { - 1 + 1} \right) = 0 \cr & \,\,\,\,\,\,{\text{If }}x = - 2,{\text{ }}u = - \left( { - 2 + 1} \right) = 1 \cr & {\text{Then}} \cr & \int_{ - 2}^{ - 1} {{e^{ - \left( {x + 1} \right)}}} dx = \int_1^0 {{e^u}} \left( { - du} \right) \cr & {\text{integrate}} \cr & = - \left( {{e^u}} \right)_1^0 \cr & {\text{use the fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = - \left( {{e^0} - {e^1}} \right) \cr & {\text{simplifying, we get:}} \cr & = - \left( {1 - e} \right) \cr & = e - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.