Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 32

Answer

$$\frac{1}{3}\sin \left( {3{e^t} - 2} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {{e^t}\cos \left( {3{e^t} - 2} \right)} dt \cr & {\text{integrate by the substitution method}} \cr & {\text{set }}u = 3{e^t} - 2{\text{ then }}\frac{{du}}{{dt}} = 3{e^t},\,\,\,\,dt = \frac{{du}}{{3{e^t}}} \cr & {\text{write the integrand in terms of }}u \cr & \int {{e^t}\cos \left( {3{e^t} - 2} \right)} dt = \int {{e^t}\cos u} \left( {\frac{{du}}{{3{e^t}}}} \right) \cr & {\text{cancel common terms}} \cr & = \int {\cos u} \left( {\frac{{du}}{3}} \right) \cr & = \frac{1}{3}\int {\cos u} du \cr & {\text{integrating}} \cr & = \frac{1}{3}\sin u + C \cr & {\text{replace }}3{e^t} - 2{\text{ for }}u \cr & = \frac{1}{3}\sin \left( {3{e^t} - 2} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.