Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 42

Answer

$$\ln 4$$

Work Step by Step

$$\eqalign{ & \int_{ - \pi /2}^{\pi /6} {\frac{{\cos t}}{{1 - \sin t}}} dt \cr & {\text{Use substitution:}}\cr &{\text{Let }}u = 1 - \sin t,{\text{ so that }}du = - \cos tdt \cr & {\text{The new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}t = \pi /6,{\text{ then }}u = 1 - \sin \left( {\pi /6} \right) = 1/2 \cr & \,\,\,\,\,\,{\text{If }}t = - \pi /2,{\text{ then }}u = 1 - \sin \left( { - \pi /6} \right) = 2 \cr & {\text{Then}} \cr & \int_{ - \pi /2}^{\pi /6} {\frac{{\cos t}}{{1 - \sin t}}} dt = \int_2^{1/2} {\frac{{ - 1}}{u}} du \cr & {\text{integrate}} \cr & = - \left( {\ln \left| u \right|} \right)_2^{1/2} \cr & {\text{use the fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = - \left( {\ln \left| {1/2} \right| - \ln \left| 2 \right|} \right) \cr & {\text{simplifying, we get:}} \cr & = - \left( { - \ln 2 - \ln 2} \right) \cr & = 2\ln 2 \cr & = \ln 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.