Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 33

Answer

$$\tan \left( {{e^x} - 7} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {{e^x}{{\sec }^2}\left( {{e^x} - 7} \right)} dx \cr & {\text{integrate by substitution method}} \cr & {\text{set }}u = {e^x} - 7{\text{ then }}\frac{{du}}{{dx}} = {e^x},\,\,\,\,dx = \frac{{du}}{{{e^x}}} \cr & {\text{write the integrand in terms of }}u \cr & \int {{e^x}{{\sec }^2}\left( {{e^x} - 7} \right)} dx = \int {{e^x}{{\sec }^2}\left( u \right)} \left( {\frac{{du}}{{{e^x}}}} \right) \cr & {\text{cancel common terms}} \cr & = \int {{{\sec }^2}u} du \cr & {\text{integrating}} \cr & = \tan u + C \cr & {\text{replace }}{e^x} - 7{\text{ for }}u \cr & = \tan \left( {{e^x} - 7} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.