Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 96

Answer

$0$

Work Step by Step

Introduce a new variable $t=e^{x}$. When $ x\rightarrow\infty$, we also have $ t\rightarrow\infty$ $\displaystyle \lim_{x\rightarrow\infty}\frac{e^{x}\tan^{-1}e^{x}}{e^{2x}+x}=\lim_{t\rightarrow\infty}\frac{t\tan^{-1}t}{t^{2}+\ln t}$ Rewrite as a product of limits, $=\displaystyle \lim_{t\rightarrow\infty}\frac{\tan^{-1}t}{t}\cdot\lim_{t\rightarrow\infty}\frac{t^{2}}{t^{2}+\ln t}=L_{1}\cdot L_{2}$ $L_{1}=\displaystyle \lim_{t\rightarrow\infty}\frac{\tan^{-1}t}{t}$=$\qquad \left[\begin{array}{ll} \text{numerator:} & \tan^{-1}t\rightarrow\frac{\pi}{2}\\ \text{denominator:} & t\rightarrow\infty \end{array}\right]\qquad=0$ The product $L_{1}\cdot L_{2}$ is zero, if $L_{2}$ is defined We check if $L_{2}$ is defined: $L_{2}=\displaystyle \lim_{t\rightarrow\infty}\frac{t^{2}}{t^{2}+\ln t}\qquad $... $\displaystyle \frac{\infty}{\infty}$, apply L'Hopital's rule $L_{2}=\displaystyle \lim_{t\rightarrow\infty}\frac{2t}{2t+\frac{1}{t}}\qquad $divide with $\displaystyle \frac{t}{t}$ $L_{2}=\displaystyle \lim_{t\rightarrow\infty}\frac{2}{2+\frac{1}{t^{2}}}\qquad [\frac{1}{t^{2}}\rightarrow 0]$ $L_{2}=1$ $L=L_{1}\cdot L_{2}=0\cdot 1=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.