Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 32

Answer

$$\frac{{dy}}{{dt}} = - \frac{1}{{2t\sqrt {t - 1} }}$$

Work Step by Step

$$\eqalign{ & y = {\cot ^{ - 1}}\sqrt {t - 1} \cr & y = {\cot ^{ - 1}}{\left( {t - 1} \right)^{1/2}} \cr & {\text{find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{{d\left( {{{\cot }^{ - 1}}{{\left( {t - 1} \right)}^{1/2}}} \right)}}{{dt}} \cr & {\text{we can use the formula }}\cr & \frac{{d\left( {{{\sin }^{ - 1}}u} \right)}}{{dt}} = - \frac{1}{{1 + {u^2}}}\frac{{du}}{{dt}}.\,\,\,\left( {{\text{see table 7}}{\text{.3}}} \right). \cr & {\text{here }}u = {\left( {t - 1} \right)^{1/2}};{\text{then}} \cr & \frac{{dy}}{{dt}} = - \frac{1}{{1 + {{\left( {{{\left( {t - 1} \right)}^{1/2}}} \right)}^2}}}\frac{{d\left( {{{\left( {t - 1} \right)}^{1/2}}} \right)}}{{dt}} \cr & \frac{{dy}}{{dt}} = - \frac{1}{{1 + t - 1}}\left( {\frac{1}{{2\sqrt {t - 1} }}} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{dt}} = - \frac{1}{{2t\sqrt {t - 1} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.