Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 61

Answer

$$\pi $$

Work Step by Step

$$\eqalign{ & \int_{ - \pi /2}^{\pi /2} {\frac{{2\cos \theta d\theta }}{{1 + {{\left( {\sin \theta } \right)}^2}}}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = \sin \theta,{\text{ so that }}du = \cos \theta d\theta \cr & {\text{the new limits on }}t{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}\theta = \pi /2,{\text{ then }}u = \sin \left( {\pi /2} \right) = 1 \cr & \,\,\,\,\,\,{\text{If }}\theta = - \pi /2,{\text{ then }}u = \sin \left( { - \pi /2} \right) = - 1 \cr & {\text{then}} \cr & \int_{ - \pi /2}^{\pi /2} {\frac{{2\cos \theta d\theta }}{{1 + {{\left( {\sin \theta } \right)}^2}}}} = \int_{ - 1}^1 {\frac{{2du}}{{1 + {u^2}}}} \cr & = 2\int_{ - 1}^1 {\frac{{du}}{{1 + {u^2}}}} \cr & {\text{integrate by using the formula }}\int {\frac{{du}}{{{a^2} + {u^2}}} = \frac{1}{a}{{\tan }^{ - 1}}\left( {\frac{u}{a}} \right) + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 1 \cr & = 2\left( {{{\tan }^{ - 1}}\left( u \right)} \right)_{ - 1}^1 + C \cr & = 2\left( {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( { - 1} \right)} \right) \cr & = 2\left( {\frac{\pi }{4} + \frac{\pi }{4}} \right) \cr & = \pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.