Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 95

Answer

$1$

Work Step by Step

Rewrite the limit as the product of two limits $L= \displaystyle \lim_{x\rightarrow 0}\frac{\tan^{-1}x^{2}}{x^{2}}\cdot\lim_{x\rightarrow 0}\frac{x}{\sin^{-1}x}=L_{1}\cdot L_{2}$ $L_{1}= \displaystyle \lim_{x\rightarrow 0}\frac{\tan^{-1}x^{2}}{x^{2}} \qquad $is of the form $\displaystyle \frac{0}{0}$, but it can be further simplified before differentiating (applying L'Hospital's rule). Introduce a new variable $t=x^{2}$. When $x\rightarrow 0$, we also have $t\rightarrow 0$ $L_{1}= \displaystyle \lim_{t\rightarrow 0}\frac{\tan^{-1}t}{t}\qquad $ Now, apply the rule: From table 7-4:$\quad \displaystyle \frac{d(\tan^{-1}u)}{dx}=\frac{1}{1+u^{2}}\frac{du}{dx}$ $L_{1}= \displaystyle \lim_{t\rightarrow 0}\frac{\frac{1}{1+t}}{1}= \displaystyle \lim_{t\rightarrow 0}\frac{1}{1+t}=\frac{1}{1+0}=1$ $L_{2}=\displaystyle \lim_{x\rightarrow 0}\frac{x}{\sin^{-1}x}\qquad $ Apply L'Hospital's rule, with $\displaystyle \frac{d(\sin^{-1}u)}{dx}=\frac{1}{\sqrt{1-u^{2}}}\frac{du}{dx}$ $L_{2}=\displaystyle \lim_{x\rightarrow 0}\frac{1}{\frac{1}{\sqrt{1-x^{2}}}}=\lim_{x\rightarrow 0}\sqrt{1-x^{2}}=\sqrt{1-0}=1$ $L=L_{1}\cdot L_{2}=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.