Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 48

Answer

$$\frac{1}{2}{\sec ^{ - 1}}\left| {\frac{{\sqrt 5 x}}{2}} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{x\sqrt {5{x^2} - 4} }}} \cr & {\text{write }}5{x^2} - 4{\text{ as }}{\left( {\sqrt 5 x} \right)^2} - {\left( 2 \right)^2} \cr & = \int {\frac{{dx}}{{x\sqrt {{{\left( {\sqrt 5 x} \right)}^2} - {{\left( 2 \right)}^2}} }}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = \sqrt 5 x,{\text{ so that }}du = \sqrt 5 dx,\,\,\,\,\,\,dx = \frac{{du}}{{\sqrt 5 }} \cr & {\text{then}} \cr & \int {\frac{{dx}}{{x\sqrt {{{\left( {\sqrt 5 x} \right)}^2} - {{\left( 2 \right)}^2}} }}} = \int {\frac{{du/\sqrt 5 }}{{x\sqrt {{u^2} - {2^2}} }}} \cr & = \int {\frac{{du}}{{\sqrt 5 x\sqrt {{u^2} - {2^2}} }}} \cr & = \int {\frac{{du}}{{u\sqrt {{u^2} - {2^2}} }}} \cr & {\text{intgrate by using the formula }}\int {\frac{{du}}{{u\sqrt {{u^2} - {a^2}} }} = \frac{1}{a}se{c^{ - 1}}\left| {\frac{u}{a}} \right| + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 2 \cr & = \int {\frac{{du}}{{u\sqrt {{u^2} - {2^2}} }}} = \frac{1}{2}se{c^{ - 1}}\left| {\frac{u}{2}} \right| + C \cr & {\text{write in terms of }}x;{\text{ replace }}\sqrt 5 x{\text{ for }}u \cr & = \frac{1}{2}{\sec ^{ - 1}}\left| {\frac{{\sqrt 5 x}}{2}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.