Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 59

Answer

$$\frac{1}{4}se{c^{ - 1}}\left| {\frac{{2x - 1}}{2}} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\left( {2x - 1} \right)\sqrt {{{\left( {2x - 1} \right)}^2} - 4} }}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = 2x - 1,{\text{ so that }}du = 2dx \cr & {\text{then}} \cr & \int {\frac{{dx}}{{\left( {2x - 1} \right)\sqrt {{{\left( {2x - 1} \right)}^2} - 4} }}} = \int {\frac{{du/2}}{{u\sqrt {{u^2} - 4} }}} \cr & = \frac{1}{2}\int {\frac{{du}}{{u\sqrt {{u^2} - 4} }}} \cr & {\text{integrate by using the formula }}\int {\frac{{du}}{{u\sqrt {{u^2} - {a^2}} }} = \frac{1}{a}se{c^{ - 1}}\left| {\frac{u}{a}} \right| + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 2 \cr & = \frac{1}{2}\left( {\frac{1}{2}se{c^{ - 1}}\left| {\frac{u}{2}} \right|} \right) + C \cr & = \frac{1}{4}se{c^{ - 1}}\left| {\frac{u}{2}} \right| + C \cr & {\text{write in terms of }}x;{\text{ replace }}2x - 1{\text{ for }}u \cr & = \frac{1}{4}se{c^{ - 1}}\left| {\frac{{2x - 1}}{2}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.