Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 76

Answer

$$\frac{1}{2}\ln \left( {{t^2} - 6t + 10} \right) + {\tan ^{ - 1}}\left( {t - 3} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{t - 2}}{{{t^2} - 6t + 10}}} dt \cr & {\text{complete the square for }}{t^2} - 6t + 10 \cr & = \int {\frac{{t - 2}}{{\left( {{t^2} - 6t + 9} \right) + 1}}} dt \cr & = \int {\frac{{t - 2}}{{{{\left( {t - 3} \right)}^2} + 1}}} dt \cr & {\text{use the substitution method}}{\text{.}} \cr & u = t - 3,{\text{ so that }}du = dt \cr & \int {\frac{{t - 2}}{{{{\left( {t - 3} \right)}^2} + 1}}} dt = \int {\frac{{u + 3 - 2}}{{{u^2} + 1}}} du \cr & = \int {\frac{{u + 1}}{{{u^2} + 1}}} du \cr & = \int {\frac{u}{{{u^2} + 1}}} du + \int {\frac{1}{{{u^2} + 1}}} du \cr & {\text{integrate by using the formulas}} \cr & \int {\frac{{du}}{u}} = \ln \left| u \right| + C{\text{ and }}\int {\frac{1}{{{u^2} + {a^2}}}} = \frac{1}{a}{\tan ^{ - 1}}\left( {\frac{x}{a}} \right) + C \cr & {\text{then}} \cr & = \frac{1}{2}\ln \left( {{u^2} + 1} \right) + {\tan ^{ - 1}}u + C \cr & {\text{write in terms of }}t;{\text{ replace }}t - 3{\text{ for }}u \cr & = \frac{1}{2}\ln \left( {{t^2} - 6t + 10} \right) + {\tan ^{ - 1}}\left( {t - 3} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.