Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 40

Answer

$$\frac{{dy}}{{dx}} = 0$$

Work Step by Step

$$\eqalign{ & y = {\cot ^{ - 1}}\frac{1}{x} - {\tan ^{ - 1}}x \cr & y = {\cot ^{ - 1}}{x^{ - 1}} - {\tan ^{ - 1}}x \cr & {\text{find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{{d\left( {{{\cot }^{ - 1}}{x^{ - 1}}} \right)}}{{dx}} - \frac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}} \cr & {\text{ use the formulas }} \cr & \frac{{d\left( {{{\tan }^{ - 1}}u} \right)}}{{dx}} = \frac{1}{{1 + {u^2}}}\frac{{du}}{{dx}}\cr & \frac{{d\left( {{{\cot }^{ - 1}}u} \right)}}{{dx}} = - \frac{1}{{1 + {u^2}}}\frac{{du}}{{dx}}.\,\,\left( {{\text{see table 7}}{\text{.3}}} \right) \cr & {\text{then}} \cr & \frac{{dy}}{{dx}} = - \frac{1}{{1 + {{\left( {{x^{ - 1}}} \right)}^2}}}\frac{{d\left( {{x^{ - 1}}} \right)}}{{dx}} - \frac{1}{{1 + {x^2}}} \cr & \frac{{dy}}{{dx}} = - \frac{1}{{1 + {x^{ - 2}}}}\left( { - \frac{1}{{{x^2}}}} \right) - \frac{1}{{1 + {x^2}}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\frac{{{x^2} + 1}}{{{x^2}}}}}\left( { - \frac{1}{{{x^2}}}} \right) - \frac{1}{{1 + {x^2}}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{{x^2} + 1}} - \frac{1}{{1 + {x^2}}} \cr & \frac{{dy}}{{dx}} = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.