Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 49

Answer

$$\frac{{2\pi }}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{{4ds}}{{\sqrt {4 - {s^2}} }}} \cr & = 4\int_0^1 {\frac{{ds}}{{\sqrt {{{\left( 2 \right)}^2} - {s^2}} }}} \cr & {\text{integrate by using the formula }}\int {\frac{{du}}{{\sqrt {{a^2} - {u^2}} }} = {{\sin }^{ - 1}}\left( {\frac{u}{a}} \right) + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 2 \cr & = 4\left( {{{\sin }^{ - 1}}\left( {\frac{s}{2}} \right)} \right)_0^1 \cr & = 4\left( {{{\sin }^{ - 1}}\left( {\frac{1}{2}} \right) - {{\sin }^{ - 1}}\left( {\frac{0}{2}} \right)} \right) \cr & {\text{simplifying, we get:}} \cr & = 4\left( {\frac{\pi }{6} - 0} \right) \cr & = \frac{{2\pi }}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.