Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 46

Answer

$$\frac{1}{{3\sqrt 3 }}{\tan ^{ - 1}}\left( {\frac{{\sqrt 3 x}}{3}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{9 + 3{x^2}}}} \cr & {\text{write }}9 + 3{x^2}{\text{ as }}{\left( 3 \right)^2} + {\left( {\sqrt 3 x} \right)^2} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = \sqrt 3 x,{\text{ so that }}du = \sqrt 3 dx,\,\,\,\,\,\,dx = \frac{{du}}{{\sqrt 3 }} \cr & {\text{then}} \cr & \int {\frac{{dx}}{{9 + 3{x^2}}}} = \int {\frac{{du/\sqrt 3 }}{{{{\left( 3 \right)}^2} + {u^2}}}} \cr & = \frac{1}{{\sqrt 3 }}\int {\frac{{du}}{{{{\left( 3 \right)}^2} + {u^2}}}} \cr & {\text{intgrate by using the formula }}\int {\frac{{du}}{{{a^2} + {u^2}}} = \frac{1}{a}{{\tan }^{ - 1}}\left( {\frac{u}{a}} \right) + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 3 \cr & = \frac{1}{{\sqrt 3 }}\left( {\frac{1}{3}{{\tan }^{ - 1}}\left( {\frac{u}{3}} \right)} \right) + C \cr & {\text{write in terms of }}x;{\text{ replace}}\sqrt 3 x{\text{ for }}u \cr & = \frac{1}{{3\sqrt 3 }}{\tan ^{ - 1}}\left( {\frac{{\sqrt 3 x}}{3}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.