Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 73

Answer

$$2\pi $$

Work Step by Step

$$\eqalign{ & \int_1^2 {\frac{{8dx}}{{{x^2} - 2x + 2}}} \cr & {\text{complete the square for }}{x^2} - 2x + 2 \cr & = {x^2} - 2x + 1 + 1 \cr & = \left( {{x^2} - 2x + 1} \right) + 1 \cr & = {\left( {x - 1} \right)^2} + 1 \cr & = \int_1^2 {\frac{{8dx}}{{{{\left( {x - 1} \right)}^2} + 1}}} \cr & {\text{use the substitution method}}{\text{:}} \cr & u = x - 1,{\text{ so that }}du = dx \cr & {\text{the new limits on }}t{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}x = 2,{\text{ then }}u = 2 - 1 = 1 \cr & \,\,\,\,\,\,{\text{If }}x = 1,{\text{ then }}u = 1 - 1 = 0 \cr & {\text{then}} \cr & \int_1^2 {\frac{{8dx}}{{{{\left( {x - 1} \right)}^2} + 1}}} = \int_0^1 {\frac{{8du}}{{{u^2} + 1}}} \cr & = 8\int_0^1 {\frac{{du}}{{{u^2} + 1}}} \cr & {\text{integrate by using the formula }}\int {\frac{{du}}{{{u^2} + {a^2}}} = \frac{1}{a}{{\tan }^{ - 1}}\left( {\frac{u}{a}} \right) + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 1 \cr & = 8\left( {{{\tan }^{ - 1}}u} \right)_0^1 \cr & = 8\left( {{{\tan }^{ - 1}}1 - {{\tan }^{ - 1}}0} \right) \cr & = 8\left( {\frac{\pi }{4} - 0} \right) \cr & = 2\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.