Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 94

Answer

$$\frac{6}{7}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{2{{\tan }^{ - 1}}3{x^2}}}{{7{x^2}}} \cr & {\text{evaluating the limit, we get:}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{2{{\tan }^{ - 1}}3{x^2}}}{{7{x^2}}} = \frac{{2{{\tan }^{ - 1}}3{{\left( 0 \right)}^2}}}{{7{{\left( 0 \right)}^2}}} \cr & = \frac{0}{0} \cr & {\text{The limit is }}\frac{0}{0}{\text{, so}}{\text{ we can apply l'Hopital's Rule}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{d/dx\left( {2{{\tan }^{ - 1}}3{x^2}} \right)}}{{d/dx\left( {7{x^2}} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{2\left( {6x} \right)}}{{1 + {{\left( {3{x^2}} \right)}^2}}}}}{{14x}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{12x}}{{14x\left( {1 + 9{x^4}} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{6}{{7\left( {1 + 9{x^4}} \right)}} \cr & {\text{evaluating the limit, we get:}} \cr & = \frac{6}{{7\left( {1 + 9{{\left( 0 \right)}^4}} \right)}} = \frac{6}{7} \cr & {\text{Then}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{2{{\tan }^{ - 1}}3{x^2}}}{{7{x^2}}} = \frac{6}{7} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.