Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 75

Answer

$$\frac{1}{2}\ln \left( {{x^2} + 4} \right) + 2{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{x + 4}}{{{x^2} + 4}}} dx \cr & = \int {\frac{x}{{{x^2} + 4}}} dx + \int {\frac{4}{{{x^2} + 4}}} dx \cr & {\text{write the integrands as}} \cr & = \frac{1}{2}\int {\frac{{2x}}{{{x^2} + 4}}} dx + 4\int {\frac{1}{{{x^2} + \left( 2 \right)}}} dx \cr & {\text{integrate by using the formulas}} \cr & \int {\frac{{du}}{u}} = \ln \left| u \right| + C{\text{ and }}\int {\frac{1}{{{x^2} + {a^2}}}} = \frac{1}{a}{\tan ^{ - 1}}\left( {\frac{x}{a}} \right) + C \cr & {\text{then}} \cr & = \frac{1}{2}\ln \left| {{x^2} + 4} \right| + 4\left( {\frac{1}{2}{{\tan }^{ - 1}}\left( {\frac{x}{2}} \right)} \right) + C \cr & {\text{simplifying}} \cr & = \frac{1}{2}\ln \left( {{x^2} + 4} \right) + 2{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.