Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 85

Answer

$$\ln \left| {{{\tan }^{ - 1}}y} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dy}}{{\left( {{{\tan }^{ - 1}}y} \right)\left( {1 + {y^2}} \right)}}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = {\tan ^{ - 1}}y,{\text{ so that }}du = \frac{1}{{1 + {y^2}}}dy \cr & {\text{then}} \cr & \int {\frac{{dy}}{{\left( {{{\tan }^{ - 1}}y} \right)\left( {1 + {y^2}} \right)}}} = \int {\frac{{du}}{u}} \cr & {\text{Integrating }} \cr & = \ln \left| u \right| + C \cr & {\text{write in terms of }}y;{\text{ replace }}{\tan ^{ - 1}}y{\text{ for }}u \cr & = \ln \left| {{{\tan }^{ - 1}}y} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.