Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 30

Answer

$$\frac{{dy}}{{dt}} = - \frac{6}{{t\sqrt {{t^4} - 9} }}$$

Work Step by Step

$$\eqalign{ & y = {\sin ^{ - 1}}\frac{3}{{{t^2}}} \cr & y = {\sin ^{ - 1}}\left( {3{t^{ - 2}}} \right) \cr & {\text{find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{{d\left( {{{\sin }^{ - 1}}\left( {3{t^{ - 2}}} \right)} \right)}}{{dt}} \cr & {\text{we can use the formula }}\cr & \frac{{d\left( {{{\sin }^{ - 1}}u} \right)}}{{dt}} = \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{dt}}.\,\,\,\left( {{\text{see table 7}}{\text{.3}}} \right). \cr & {\text{here }}u = 3{t^{ - 2}};{\text{then}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{\sqrt {1 - {{\left( {3{t^{ - 2}}} \right)}^2}} }}\frac{{d\left( {3{t^{ - 2}}} \right)}}{{dt}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{\sqrt {1 - 9{t^{ - 4}}} }}\left( { - 6{t^{ - 2}}} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{dt}} = - \frac{6}{{{t^2}\sqrt {\frac{{{t^4} - 9}}{{{t^4}}}} }} \cr & \frac{{dy}}{{dt}} = - \frac{6}{{t\sqrt {{t^4} - 9} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.