Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 84

Answer

$$\frac{{2{{\left( {{{\tan }^{ - 1}}x} \right)}^{3/2}}}}{3} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt {{{\tan }^{ - 1}}x} dx}}{{1 + {x^2}}}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = {\tan ^{ - 1}}x,{\text{ so that }}du = \frac{1}{{1 + {x^2}}}dx \cr & {\text{then}} \cr & \int {\frac{{\sqrt {{{\tan }^{ - 1}}x} dx}}{{1 + {x^2}}}} = \int {\sqrt u } du \cr & = \int {{u^{1/2}}} du \cr & {\text{Integrating by the power rule}} \cr & = \frac{{{u^{3/2}}}}{{3/2}} + C \cr & = \frac{{2{u^{3/2}}}}{3} + C \cr & {\text{write in terms of }}x;{\text{ replace }}{\tan ^{ - 1}}x{\text{ for }}u \cr & = \frac{{2{{\left( {{{\tan }^{ - 1}}x} \right)}^{3/2}}}}{3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.