Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 90

Answer

$$\frac{{{{\left( {{{\sin }^{ - 1}}{e^x}} \right)}^2}}}{2} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^x}{{\sin }^{ - 1}}{e^x}}}{{\sqrt {1 - {e^{2x}}} }}} dx \cr & {\text{use the substitution method}}{\text{.}} \cr & u = {\sin ^{ - 1}}{e^x},{\text{ so that }}du = \frac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }}dx \cr & {\text{then}} \cr & \int {\frac{{{e^x}{{\sin }^{ - 1}}{e^x}}}{{\sqrt {1 - {e^{2x}}} }}} dx = \int u du \cr & {\text{Integrating }} \cr & = \frac{{{u^2}}}{2} + C \cr & {\text{write in terms of }}x;{\text{ replace }}{\sin ^{ - 1}}{e^x}{\text{ for }}u \cr & = \frac{{{{\left( {{{\sin }^{ - 1}}{e^x}} \right)}^2}}}{2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.