Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 91

Answer

$$5$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{{{\sin }^{ - 1}}5x}}{x} \cr & {\text{evaluating the limit, we get:}} \cr & = \frac{{{{\sin }^{ - 1}}5\left( 0 \right)}}{0} \cr & = \frac{0}{0} \cr & {\text{The limit is }}\frac{0}{0}{\text{, so}}{\text{ we can apply l'Hopital's Rule}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{d/dx\left( {{{\sin }^{ - 1}}5x} \right)}}{{d/dx\left( x \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{5}{{\sqrt {1 - {{\left( {5x} \right)}^2}} }}}}{1} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{5}{{\sqrt {1 - 25{x^2}} }} \cr & {\text{evaluating the limit, we get:}} \cr & = \frac{5}{{\sqrt {1 - 25{{\left( 0 \right)}^2}} }} \cr & = 5 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.