Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 72

Answer

$${\tan ^{ - 1}}\left( {y + 3} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dy}}{{{y^2} + 6y + 10}}} \cr & {\text{complete the square for }}{y^2} + 6y + 10 \cr & = {y^2} + 6y + 9 + 1 \cr & = {\left( {y + 3} \right)^2} + 1 \cr & {\text{then}} \cr & \int {\frac{{dy}}{{{y^2} + 6y + 10}}} = \int {\frac{{dy}}{{{{\left( {y + 3} \right)}^2} + 1}}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = y + 3,{\text{ so that }}du = dy \cr & \int {\frac{{dy}}{{{{\left( {y + 3} \right)}^2} + 1}}} = \int {\frac{{du}}{{{u^2} + 1}}} \cr & {\text{integrate by using the formula }}\int {\frac{{du}}{{{u^2} + {a^2}}} = \frac{1}{a}{{\tan }^{ - 1}}\left( {\frac{u}{a}} \right) + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 1 \cr & = {\tan ^{ - 1}}\left( u \right) + C \cr & {\text{write in terms of }}y;{\text{ replace }}y - 1{\text{ for }}u \cr & = {\tan ^{ - 1}}\left( {y + 3} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.