Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 57

Answer

$$\frac{1}{{\sqrt 2 }}ta{n^{ - 1}}\left( {\frac{{x - 1}}{{\sqrt 2 }}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{2 + {{\left( {x - 1} \right)}^2}}}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = x - 1,{\text{ so that }}du = dx \cr & {\text{then}} \cr & \int {\frac{{dx}}{{2 + {{\left( {x - 1} \right)}^2}}}} = \int {\frac{{du}}{{2 + {u^2}}}} \cr & = \int {\frac{{du}}{{\left( {\sqrt 2 } \right) + {u^2}}}} \cr & {\text{intgrate by using the formula }}\int {\frac{{du}}{{{a^2} + {u^2}}} = \frac{1}{a}{{\tan }^{ - 1}}\left( {\frac{u}{a}} \right) + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = \sqrt 2 \cr & = \frac{1}{{\sqrt 2 }}ta{n^{ - 1}}\left( {\frac{u}{{\sqrt 2 }}} \right) + C \cr & {\text{write in terms of }}x;{\text{ replace }}x - 1{\text{ for }}u \cr & = \frac{1}{{\sqrt 2 }}ta{n^{ - 1}}\left( {\frac{{x - 1}}{{\sqrt 2 }}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.