Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 23

Answer

$$\frac{{dy}}{{dt}} = \frac{{\sqrt 2 }}{{\sqrt {1 - 2{t^2}} }}$$

Work Step by Step

$$\eqalign{ & y = {\sin ^{ - 1}}\sqrt 2 t \cr & {\text{find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{{d\left( {{{\sin }^{ - 1}}\sqrt 2 t} \right)}}{{dt}} \cr & {\text{we can use the formula: }}\cr & \frac{{d\left( {{{\sin }^{ - 1}}u} \right)}}{{dt}} = \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{dt}}.\,\,\,\left( {{\text{see table 7}}{\text{.3}}} \right). \cr & {\text{here }}u = \sqrt 2 t,\,\,{\text{then}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{\sqrt {1 - {{\left( {\sqrt 2 t} \right)}^2}} }}\frac{{d\left( {\sqrt 2 t} \right)}}{{dt}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{\sqrt {1 - 2{t^2}} }}\left( {\sqrt 2 } \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{dt}} = \frac{{\sqrt 2 }}{{\sqrt {1 - 2{t^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.