Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 82

Answer

$$ - {e^{{{\cos }^{ - 1}}x}} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^{{{\cos }^{ - 1}}x}}dx}}{{\sqrt {1 - {x^2}} }}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = {\cos ^{ - 1}}x,{\text{ so that }}du = - \frac{1}{{\sqrt {1 - {x^2}} }}dx \cr & {\text{then}} \cr & \int {{e^{{{\sin }^{ - 1}}x}}\frac{1}{{\sqrt {1 - {x^2}} }}dx} = - \int {{e^u}} du \cr & {\text{Integrating}} \cr & = - {e^u} + C \cr & {\text{write in terms of }}x;{\text{ replace }}{\cos ^{ - 1}}x{\text{ for }}u \cr & = - {e^{{{\cos }^{ - 1}}x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.