Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 45

Answer

$$\frac{1}{{\sqrt {17} }}{\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {17} }}} \right)$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{17 + {x^2}}}} \cr & {\text{write }}17 + {x^2}{\text{ as }}{\left( {\sqrt {17} } \right)^2} + {\left( x \right)^2} \cr & \int {\frac{{dx}}{{{{\left( {\sqrt {17} } \right)}^2} + {{\left( x \right)}^2}}}} \cr & {\text{intgrate by using the formula }}\int {\frac{{du}}{{{a^2} + {u^2}}} = \frac{1}{a}{{\tan }^{ - 1}}\left( {\frac{u}{a}} \right) + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = \sqrt {17} {\text{ and }}u = x,\,\,\,\,du = dx \cr & = \int {\frac{{dx}}{{{{\left( {\sqrt {17} } \right)}^2} + {{\left( x \right)}^2}}}} = \frac{1}{{\sqrt {17} }}{\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {17} }}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.