Answer
$\int x\sin (2x^2) dx = -\frac{1}{4}\cos(2x^2) + C$
Work Step by Step
$\int x\sin (2x^2) dx\space$ and $\space u = 2x^2$
$du = 4x\cdot dx$
Doing the substitution $u = 2x^2$
$\int \sin (u) \frac{du}{4}\space \Rightarrow\space \frac{1}{4}\int \sin(u)du$
Applying the integrative rules
$\frac{1}{4}\int \sin(u)du\space = -\frac{1}{4}\cos(u) + C$
Backing to $x$
$\int x\sin (2x^2) dx = -\frac{1}{4}\cos(2x^2) + C$