Answer
$\frac{-1}{2}sin^2\frac{1}{\theta}+C$
Work Step by Step
Let u=$sin\frac{1}{\theta}=>du=(\cos \frac{1}{\theta})(\frac{-1}{theta})d\theta=>-du=\frac{1}{\theta^2}cos \frac{1}\theta d\theta$
=$\int \frac{1}{\theta^2} \sin \frac{1}{\theta} \cos\frac{1}{\theta}d \theta$
=$\int -u du$
=$\frac{-1}{2}u^2+C$
=$\frac{-1}{2}sin^2\frac{1}{\theta}+C$