Answer
$\frac{1}{12}(x-1)^{12}+\frac{1}{11}(x-1)^{11}+C$
Work Step by Step
Let u$=x-1.$
Then du=dx and x=u+1.
Thus $\int x(x=1)^{10}dx$
=$\int (u+1)u^{10}du$
=$\int (u^{11}+u^{10})$
=$\frac{1}{12}u^{12}+\frac{1}{11}u^{11}+C$
=$\frac{1}{12}(x-1)^{12}+\frac{1}{11}(x-1)^{11}+C$