Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 45

Answer

$\frac{-1}{8}(1-x)^8+\frac{4}{7}(1-x)^7-\frac{2}{3}(1-x)^6$

Work Step by Step

Let u=1-x. Then du=-1dx and (-1)du=dx and x=1-u. thus $\int (x+1)^2(1-x)^5dx$ =$\int (2-u)^2 u^5(-1)du$ =$\int (-u^7 +4u^6- 4u^5)du$ =$\frac{-1}{8}u^8+\frac{4}{7}u^7-\frac{2}{3}u^6$ =$\frac{-1}{8}(1-x)^8+\frac{4}{7}(1-x)^7-\frac{2}{3}(1-x)^6+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.