Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 11

Answer

$\int\frac{9r^2 dr}{\sqrt{1-r^3}} = -6\sqrt{1-r^3}+C$

Work Step by Step

$\int\frac{9r^2 dr}{\sqrt{1-r^3}}\space$ and $\space u = 1 - r^3$ $du = -3r^2 dr$ Doing the substitution $\space u = 1-r^3$ $\int\frac{-3du}{\sqrt{u}}\space\Rightarrow\space-3\int\frac{du}{\sqrt{u}}$ Applying the integrative rules $-3\int\frac{du}{\sqrt{u}} = -3\cdot 2\sqrt{u}+C\space\Rightarrow\space-3\int\frac{du}{\sqrt{u}} = -6\sqrt{u}+C$ Backing to $r$ $\int\frac{9r^2 dr}{\sqrt{1-r^3}} = -6\sqrt{1-r^3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.