Answer
$\int (3x+2)(3x^2+4x)^4 dx=\frac{(3x^2+4x)^5}{10}+C$
Work Step by Step
$\int (3x+2)(3x^2+4x)^4 dx$ $\space$ and $\space \space u = 3x^2 + 4x$
$du = (6x +4)dx$
Doing the substitution $\space\space u = 3x^2 + 4x$
$\int (u)^4 \frac{du}{2}\space$ => $\space\frac{1}{2}\int u^4 du$
$\frac{1}{2}\int u^4 du = \frac{u^5}{10} + C$
Backing to x
$\int (3x+2)(3x^2+4x)^4 dx=\frac{(3x^2+4x)^5}{10}+C$