Answer
$\frac{-2}{3}cos(x^{3/2}+1)+C$
Work Step by Step
Let u=$x^{3/2}+1=>du=\frac{3}{2}x^{1/2}dx=>\frac{2}{3}du=x^{1/2}dx$
=$\int x^{1/2} sin(x^{3/2}+1)dx$
=$\int (\sin u)(\frac{2}{3}du)$
=$\frac{2}{3} \int \sin udu=\frac{2}{3}(-\cos u)+C$
=$\frac{-2}{3}cos(x^{3/2}+1)+C$