Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 20

Answer

$\frac{(7-3y^{2})\times\sqrt (7-3y^{2})}{3}$ + C

Work Step by Step

3$\int$y$\sqrt (7-3y^{2})$dy using the substitution t=7-$3y^{2}$ transform the integral 3 $\times$ $\int$ -$\frac{1}{6}$ $\times$ $\sqrt t$ dt use the property of integral $\int$a$\times$f(x)dx=a$\times$$\int$f(x)dx 3$\times$ ($-\frac{1}{6}$)$\times$$\sqrt t$ dt -$\frac{1}{2}$$\times$$\int$$t^{\frac{1}{2}}$ dt -$\frac{1}{2}$$\times$ $\frac{2t\sqrt t}{3}$ =$\gt$ back t=7-$3y^{2}$ -$\frac{1}{2}$ $\times$ $\frac{{2(7-3y^{2})\sqrt (7-3^{2})}}{3}$ $\frac{(7-3y^{2})\times\sqrt (7-3y^{2})}{3}$ + C
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.